protoDUNE Software Status & BNL Activity

Elizabeth Worcester August 24, 2016

protoDUNE LArSoft Details

- protoDUNE code is part of dunetpc:
 - cdcvs.fnal.gov/redmine/ projects/dunetpc
- Most code is common with DUNE FD
- When protoDUNE-specific details are required, this will be set via services fcl files
 - protoDUNE optical library generated by A. Himmel
 - protoDUNE cosmics library generated by M. Bass

```
protodune services: {
 ExptGeoHelperInterface:
                               @local::dune_geometry_helper
Geometry:
                               @local::protodune geo
                               @local::dunefd detectorclocks
DetectorClocksService:
DetectorPropertiesService:
                               @local::dunefd detproperties
LArPropertiesService:
                               @local::dunefd_properties
LATFFT:
                               @local::dunefd larfft
DatabaseUtil:
                               @local::dunefd database
BackTracker:
                               @local::dunefd backtracker
                               @local::protodune spacecharge
 SpaceCharge:
                               @local::dune seedservice
LArSeedService:
SignalShapingServiceDUNE:
                               @local::dunefd signalshapingservice
ChannelStatusService:
                               @local::dunefd channel status
protodune_simulation_services: {
                               @local::dunefd larfft
LArG4Parameters:
                               @local::protodune largeantparameters
 ExptGeoHelperInterface:
                               @local::dune_geometry_helper
                               @local::protodune geo
 DetectorClocksService:
                               @local::dunefd detectorclocks
DetectorPropertiesService:
                               @local::dunefd detproperties
LArPropertiesService:
                               @local::dunefd properties
DatabaseUtil:
                               @local::dunefd database
LArVoxelCalculator:
                               @local::dunefd larvoxelcalculator
MagneticField:
                               @local::no_mag
                               @local::dunefd_backtracker
 BackTracker:
 SpaceCharge:
                               @local::protodune spacecharge
LArSeedService:
                               @local::dune_seedservice
 SignalShapingServiceDUNE:
                               @local::dunefd signalshapingservice
 PhotonVisibilityService:
                               @local::protodune photonvisibilityservice
OpDetResponseInterface:
                               @local::dunefd opdetresponse
ChannelStatusService:
                               @local::dunefd channel status
```

protoDUNE Geometry

- In gdml; includes wires and nowires version
- Developed by Martin Tzanov, starting from script generate DUNE FD gdml written by Tyler Alion
- Active volume and wire planes are correctly implemented with sufficient detail
- Basic cryostat volume implemented based on Martin's reading of engineering drawings
- Includes basic implementation of field cage (need work)
- Simple "beam window" implemented as nitrogenfilled steel pipe (needs work)
 - 25 cm outer diameter, 0.5 mm thick steel wall
 - Does not represent details of beam window design
 - Location somewhat arbitrary
 - Still some issues with particles interacting more tha expected
- Recently corrected material in outer volumes (foam, steel support) that affects cosmic simulations

Starting position for particle gun MC

CORSIKA in LArSoft

- CORSIKA cosmic ray simulation implemented in LArSoft by Matt Bass
 - Originally for uBooNE
 - See talk at LArSoft coordination meeting: indico.fnal.gov/conferenceDisplay.py?confld=10893
- CorsikaGen module in LArSoft samples from pre-generated library of CORSIKA samples
- Data files containing pre-generated samples produced on per-experiment basis – thanks to Matt for generating this library for protoDUNE

CORSIKA

- CORSIKA simulates extensive air showers initiated by cosmic ray particles
 - Wide range of energy scales, multiple primary types (p, He, Fe, etc.)
 - Resulting secondary particle flux evaluated at a specified altitude
 - o Multiple models available for interactions (GHEISHA, FLUKA, etc.)
- Past CR simulations for uboone have been with CRY
 - Gives pre-generated distributions of particles at sea level, 2100 m, 11300 m based on tables from full MCNPX simulations of proton primaries between 1 GeV and 100 TeV
- CRY has a few shortcomings:
 - FNAL (226 m) elevation not available, roughly 10% effect in muons
 - Larger effect in neutrons, protons, and electrons
 - Wide energy bins lead to binning artifacts in Ε,θ
 - Only simulates proton primaries
 - Limited to only using MCNPX model for particle propagation

M. Bass₃

Quick check of muon rates:

- uBooNE: ~160 Hz/m²
- protoDUNE: ~170 Hz/m²
- Expected difference based on altitude ~6%
- This exercise uncovered issues with material in outer layers of DUNE/protoDUNE geometry – fix in progress.

Cosmic Simulation in protoDUNE

```
@local::standard_CORSIKAGen_CMC
protodune_corsika_cmc:
protodune corsika cmc.SampleTime:
                                                #0.2 ms (q4 rise time) + 2.25 ms
                                      6.45e-3
 (1 full drift window) + 4.0 ms (readout)
                                      -3.325e-3 #4.0 ms readout should start at
protodune_corsika_cmc.TimeOffset:
-0.875 ms to match data
protodune corsika cmc.BufferBox:
                                      [ -300.0,300.0,-300.0,300.0,-300.0,300.0 ]
protodune_corsika_cmc.ShowerAreaExtension: 2000
protodune_corsika_cmc.ProjectToHeight: 865 #height to which particles are projected in cm
protodune_corsika_cmc.ShowerInputFiles: [
            "/pnfs/dune/persistent/users/mibass/corsika/sqShowers/DAT2*.db",
            "/pnfs/dune/persistent/users/mibass/corsika/sqShowers/DAT3*.db",
            "/pnfs/dune/persistent/users/mibass/corsika/sqShowers/DAT4*.db",
            "/pnfs/dune/persistent/users/mibass/corsika/sqShowers/DAT5*.db",
            "/pnfs/dune/persistent/users/mibass/corsika/sqShowers/DAT6*.db"
```

- SampleTime = 1 full drift time + readout window
- TimeOffset adjusted for protoDUNE readout window
- ProjectToHeight: Showers start here (just above the top of the cryostat volume in existing geometry because we do not have realistic simulation of building, etc)
- ShowerInputFiles: Files in dCache persistent

Example Cosmic "Event"

From Dorota:

- Dorota reports reconstruction working well but Kevin sees tracks that are generated but not reconstructed – Dorota investigating
- Will have ~40 events per readout window

protoDUNE SCE Simulation

- M. Mooney has standalone code to calculate expected field distortion based on assumption of uniform space charge distribution
- Position distortions based on calculated variation in E-field implemented in LArSoft (LArG4/LArVoxelReadout)
- Adjustment to E-field used to calculate recombination factor in process of being implemented in LArSoft (LArG4/ lonizationAndScintillation)

protoDUNE SCE Calibration

- No laser calibration system planned for protoDUNE
- Cosmic tagger (using spare DC outer veto modules) being discussed
- Mike, Elizabeth, Flavio have been thinking about how to calibrate using cosmic and beam halo muons and requirements for cosmic tagger for this application
- See talks from Jacob and Mike in: https:// indico.fnal.gov/conferenceDisplay.py?confld=12584

protoDUNE SCE Calibration

- ♦ Two samples of t₀-tagged tracks can provide SCE corrections:
 - <u>Single tracks</u> enable corrections at TPC faces by utilizing endpoints of tracks (correction vector approximately orthonormal to TPC face)
 - <u>Pairs of tracks</u> enables corrections in TPC bulk by utilizing unambiguous point-to-point correction looking at track crossing points
- Require high-momentum tracks (plenty from cosmics, beam halo)

protoDUNE SCE Calibration

- Elizabeth's summer student (Jacob) did simple study of illumination of cosmic tracks crossing a uniform distribution of beam halo tracks to see if top cosmic tagger required
- Using Jacob's framework, Matt is updating the study to include:
 - Higher statistics cosmic sample
 - Real beam halo distribution obtained from CERN beam simulation
 - Cosmic-cosmic crossing tracks
 - Cosmic tracks that cross APA-APA or APA-CPA
 - More realistic CRT geometry

protoDUNE SCE Calibration: Outstanding Issues

- Time dependence (argon flow effects?)
- Required granularity of correction?
- Simplifying assumptions about size of effect at TPC edges ok?
- Optimal placement of CRT panels?
- Technical details regarding CRT panels

Existing MC Samples

- MCC6 samples:
 - No SCE
 - Particle gun injected at front face of "beam window"
 - Both mono-energetic and $\Delta p/p-5\%$
 - Positrons (1 GeV)
 - Kaons (1 GeV)
 - Protons (1 GeV)
 - Pions (200 MeV)
 - Muons (200 MeV)
 - Samples chosen based on needs of reconstruction effort (Robert/ Dorota) and to for first exercise of MCC machinery with protoDUNE

- Privately generated samples:
 - Mono-energetic MCC samples with SCE position effect
 - Additional particle momenta using mono-energetic MCC setup w/ and w/o SCE position effect (BNL summer students J. Larkin and A. Depoian)
 - Positrons (300 MeV, 500 MeV, 1 GeV, 5 GeV)
 - Protons (700 GeV, 1 GeV, 2 GeV, 3 GeV)
 - Pions (300 MeV, 500 MeV, 1 GeV, 5 GeV)
 - Muons (500 MeV, 1 GeV, 5 GeV)
 - Cosmics ray sample (alone and overlaid on "beam" muons

All samples stored on FNAL DUNE disks (/dune/data or /pnfs/dune/scratch). Please contact Elizabeth for locations. Additional samples easily available upon request.

Work List

- Work list for both calibration and analysis topics generated at Science Workshop
- See email from Chang Kee or <u>https://docs.google.com/spreadsheets/d/</u> <u>1qPS5ZwaDtyrMM8GfMvcwoQjyKksz urL4OMCY</u> <u>Yh6yMA/edit</u>
- ETW listed as working on cosmic reconstruction,
 MM listed as working on space charge calibration
- All topics could benefit from additional effort

Meetings/Mailing Lists

- protoDUNE measurements group and DUNE calibrations group having joint meetings Thursdays at 10 CT.
 - Measurements meeting nominally in physics weeks, coordinated by Jarek Nowak and Donna Naples, meeting announcements go to fdcernprototype@fnal.gov and CENF-LBNF-Test@cern.ch lists
 - Calibrations meeting nominally in detector weeks, coordinated by Josh Klein, meeting announcements go to dune-fd-calibrations@fnal.gov list